Pancreastatin-dependent inflammatory signaling mediates obesity-induced insulin resistance.

نویسندگان

  • Gautam K Bandyopadhyay
  • Minh Lu
  • Ennio Avolio
  • Jawed A Siddiqui
  • Jiaur R Gayen
  • Joshua Wollam
  • Christine U Vu
  • Nai-Wen Chi
  • Daniel T O'Connor
  • Sushil K Mahata
چکیده

Chromogranin A knockout (Chga-KO) mice exhibit enhanced insulin sensitivity despite obesity. Here, we probed the role of the chromogranin A-derived peptide pancreastatin (PST: CHGA(273-301)) by investigating the effect of diet-induced obesity (DIO) on insulin sensitivity of these mice. We found that on a high-fat diet (HFD), Chga-KO mice (KO-DIO) remain more insulin sensitive than wild-type DIO (WT-DIO) mice. Concomitant with this phenotype is enhanced Akt and AMPK signaling in muscle and white adipose tissue (WAT) as well as increased FoxO1 phosphorylation and expression of mature Srebp-1c in liver and downregulation of the hepatic gluconeogenic genes, Pepck and G6pase. KO-DIO mice also exhibited downregulation of cytokines and proinflammatory genes and upregulation of anti-inflammatory genes in WAT, and peritoneal macrophages from KO mice displayed similarly reduced proinflammatory gene expression. The insulin-sensitive, anti-inflammatory phenotype of KO-DIO mice is masked by supplementing PST. Conversely, a PST variant peptide PSTv1 (PST-NΔ3: CHGA(276-301)), lacking PST activity, simulated the KO phenotype by sensitizing WT-DIO mice to insulin. In summary, the reduced inflammation due to PST deficiency prevented the development of insulin resistance in KO-DIO mice. Thus, obesity manifests insulin resistance only in the presence of PST, and in its absence obesity is dissociated from insulin resistance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Revised Manuscript DB13-1747R2 Pancreastatin-dependent inflammatory signaling mediates obesity-induced insulin resistance

Chromogranin A knockout (Chga-KO) mice exhibit enhanced insulin sensitivity despite obesity. Here we probed the role of the Chromogranin A-derived peptide pancreastatin (PST: CHGA273-301), by investigating the effect of diet-induced obesity (DIO) on insulin sensitivity of these mice. We found that on a high fat diet (HFD), Chga-KO mice (KO-DIO) remain more insulin sensitive than wild-type DIO (...

متن کامل

Adiponectin resistance and proinflammatory changes in the visceral adipose tissue induced by fructose consumption via ketohexokinase-dependent pathway.

An epidemic of obesity and type 2 diabetes is linked with the increase in consumption of fructose-containing sugars, such as sucrose and high-fructose corn syrup. In mammalian cells, fructose is metabolized predominantly via phosphorylation to fructose-1 phosphate by ketohexokinase (KHK) or by alternative pathways. Here we demonstrate that a KHK-dependent pathway mediates insulin resistance and...

متن کامل

M2 Macrophage Polarization Mediates Anti-inflammatory Effects of Endothelial Nitric Oxide Signaling

Endothelial nitric oxide (NO) signaling plays a physiological role in limiting obesity-associated insulin resistance and inflammation. This study was undertaken to investigate whether this NO effect involves polarization of macrophages toward an anti-inflammatory M2 phenotype. Mice with transgenic endothelial NO synthase overexpression were protected against high-fat diet (HFD)-induced hepatic ...

متن کامل

Inflammation-mediated obesity and insulin resistance as targets for nutraceuticals.

Obesity-induced inflammation plays an important role in the development of insulin resistance, type 2 diabetes (T2D), and metabolic dysfunctions. Chronic activation of proinflammatory pathways within insulin target cells can lead to obesity-related insulin resistance. The inflammatory mediators consist of immune cells, cytokines, adipokines, and inflammatory signaling molecules. Targeting obesi...

متن کامل

Role of NO/VASP Signaling Pathway against Obesity-Related Inflammation and Insulin Resistance

Obesity has quickly become a worldwide pandemic, causing major adverse health outcomes such as dyslipidemia, type 2 diabetes mellitus, cardiovascular disease and cancers. Obesity-induced insulin resistance is the key for developing these metabolic disorders, and investigation to understand the molecular mechanisms involved has been vibrant for the past few decades. Of these, low-grade chronic i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Diabetes

دوره 64 1  شماره 

صفحات  -

تاریخ انتشار 2015